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In this communication, we report a new approach to the allocolchicine carbocyclic skeleton based upon an aryl siloxane coupling reaction
and a phenanthrol ring expansion. These key steps allow for the selective functionalization of every carbon within the carbocyclic framework.
The siloxane coupling —phenanthrol sequence was applied to the synthesis of two allocolchicinoids, including the first fully synthetic approach
to N-acetyl colchinol- O-methyl ether (NCME).

Allocolchicine (1) and N-acetyl colchinolo-methyl ether approaches have been reported for the partial synthesis of
(NCME) (2) possess a 6-7-6 carbocyclic framework, related allocolchicine or derivative$. Additionally, several total

to the 6-7-7 tricylic system present in colchicir®).(Like syntheses of allocolchicine existhowever, there are no
colchicine, the allocolchicinoids are potent tubulin inhibitbrs. reported total syntheses of NCME)( This allocolchicinoid

The majority of the synthetic work related to allocolchicine possesses tubulin inhibition activity that is greater than that
has relied on chemical degradation of colchicine to provide of colchicine itself:?

allocolchicine and its analogues, and this has limited access It has been demonstrated that the A and C allocolchicinoid
to novel derivatives possessing reduced toxicity. Several rings are required to maintain full biological activity!

(2) (a) Banwell, M. G.; Fam, M.-A.; Gable, R. W.; Hamel, E.Chem.

(1) (a) Nakagawa-Goto, K.; Jung, M. K.; Hamel, E.; Wu, C.-C.; Bastow, Soc., Chem Commuth994, 2647—2649. (b) Banwell, M. G.; Cameron, J.

K. F.; Brossi, A.; Ohta, S.; Lee, K.-Hdeterocycles2005, 65, 541—550. M.; Corbett, M.; Dupuche, J. R.; Hamel, E.; Lambert, J. N.; Lin, C. M;
(b) Shi, Q.; Chen, K.; Chen, X.; Brossi, A.; Verdier-Pinard, P.; Hamel, E.; Mackay, M. F.Aust. J. Chem1992,45, 1967—1982. (c) Itoh, Y.; Brossi,

McPhail, A. T.; Tropsha, A.; Lee, K.-HJ. Org. Chem1998,63, 4018— A.; Hamel, E.; Lin, C. M.Helv. Chim. Actal988,71, 1199—1209. (d)
4025. (c) Bergemann, S.; Brecht, R.; Buttner, F.; Guenard, D.; Gust, R.; Boye, O.; Itoh, Y.; Brossi, AHelv. Chim. Actal989,72, 1690—1696. (e)
Seitz, G.; Stubbs, M. T.; Thoret, 8ioorg. Med. Chem2003,11, 1269— Boye, O.; Brossi, A.; Yeh, H. J. C.; Hamel, E.; Wegrzynski, B.; Toome,
1281. (d) Brecht, R.; Seitz, G.; Guenard, D.; ThoreBi®org. Med. Chem. V. Can. J. Chem1992,70, 1237—1249.

200Q 8, 557-562. (e) Roesner, M.; Capraro, H.-G.; Jacobson, A. E.; Atwell, (3) (@) Sawyer, J. S.; Macdonald, T.Tetrahedron Lett1988 29,4839

L.; Brossi, A.; lorio, M. A.; Williams, T. H.; Sik, R. H.; Chignell, C. R. 4842. (b) Buettner, F.; Bergemann, S.; Guenard, D.; Gust, R.; Seitz, G.;

Med. Chem1981,24, 257—261. (f) Brossi, A.; Sharma, P. N.; Atwell, L.;  Thoret, S.Bioorg. Med. Chem2005,13, 3497—3511. (c) Vorogushin, A.
Jacobson, A. E.; lorio, M. A.; Molinari, M.; Chignell, C. B. Med. Chem V.; Predeus, A. V.; Wulff, W. D.; Hansen, H.-J. Org. Chem.2003,68,
1983,26, 1365—1369. (g) Han, S.; Hamel, E.; Bastow, K. F.; McPhail, A. 5826—5831. (d) Leblanc, M.; Fagnou, Rrg. Lett.2005,7, 2849—2852.

T.; Brossi, A.; Lee, K.-HBioorg. Med. Chem. Let2002,12, 2851—2853. (4) (a) Rossi, M.; Gorbunoff, M. J.; Caruso, F.; Wing, B.; Perez-Ramirez,
(h) Shi, Q.; Chen, K.; Brossi, A.; Verdier-Pinard, P.; Hamel, E.; McPhail, B.; Timasheff, S. NBiochemistry1996,35, 3286-3289. (b) Perez-Ramirez,
A. T, Lee, K.-H.Helv. Chim. Actal998,81, 1023—1037. B.; Gorbunoff, M. J.; Timasheff, S. NBiochemistry1998 37, 1646-1661.

10.1021/0l061413t CCC: $33.50  © 2006 American Chemical Society
Published on Web 08/10/2006



Scheme 2. Annulation Model System

OH OMOM
. CHCl
6 MOM-CI 6 50% NaOH
fb e —
R = CO;Me (1) 3 O O Hunig's Base O O BNEt;NCI
R = OMe (2) 8 89% 9 92%
I

C

|
However, the B ring can be manipulated to generate X_omom ¢ o o
analogues that retain the antitumor activity, while moderating . 2"|"P':\C' C PdeC .
the toxicity of these compounds. The existing total syntheses O O W O T O O
11

C
do not readily provide access to B ring analogues. Accord- " 95% EtOH 12
ingly, a synthetic approach that would allow for the facile 72%
construction of the A, B, and C rings, while also permitting
functionalization of all of the rings, would have great
synthetic value. Our approach seeks to satisfy this goal by Having successfully generated the allocolchicine carbocy-
utilizing an aryl siloxane coupling reaction developed within Cclic framework in ketonel2, our attention focused on
our laboratory to form the AC biaryl coré and a phenan- derivatization of chloroenonkl (Scheme 3). This compound
throl ring expansion to provide the seven-membered B ring
(Scheme 1).

Scheme 3. Functionalization ofx-Chloro Ketonell
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. ) possesses a high degree of functionalization which could be

Our first task was to explore the phenanthrol ring expan- yilized to generate allocolchicine B ring analogues. Ac-
sion. The one-carbon expansion of phenanthrene has beegqrgingly, enonedl1was hydrogenated to benzyl alcoid
studied’ but the corresponding ring expansion of phenanthrol ajternatively, by switching the hydrogenation solvent from
has not been investigated. Accordingly, a model system gtoH to EtOAcS? hydrogenation was stopped at the chlo-
utilizing 9-phenanthrol (8) as the substrate was examined. roketone, which was eliminated to generate the Michael
Protection of the hydroxyl moiety of 9-phenanthrB) @s a  gcceptorl 4.
MOM ether proceeded smoothly to provide etB¢Echeme The palladium-catalyzed cross-coupling of the chloride
2). Reaction of this compound under optimized conditions moiety of a-chloroenonel1 was also investigated. Gratify-
(CHCls, 50% NaOH, BnENCI, room temperature, 5 h) led  ingly, when chloroenon&1 was subjected to standard Suzuki
to the formation of the dichlorocyclopropyl addut in coupling conditiong, a good yield of the coupled product
excellent yield. Treatment of compoud® with dilute acid 15 was obtained. This result is particularly noteworthy
removed the MOM ether and induced cyclopropane ring pecause it constitutes only the second example of the cross-

opening to provide the ring-expanded chloroendt®e ¢coupling of ano-chloroenone. The coupling of iodides and

Hydrogenation of the chloroenone, using conditions devel- hromides has been studied previouslyyt until recently,

oped by Jones and Cobufthprovided aryl ketond.2. there was not an example of the coupling of a chloride
substraté.
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noids. An aryl siloxane coupling reaction would be used to
generate the unsymmetrical A—C biaryl bond. Under opti-
mized conditions, the siloxane coupling reaction provided
several unsymmetrical biaryls, including substrates that can weo

be utilized for the synthesis of NCMR), and allocolchicine

(1) (Table 1, entries 2 and 4, respectively). This coupling

Table 1. Synthesis of Biaryl Derivatives Using
Palladium-Catalyzed Siloxane Coupling

MeO CHo MeO CHO
NS
MeO Br MeO O
OMe 6 OMe R
entry R yield®

1 H 94

2 OMe 93

3 Me 87
4 COqEt 94

aConditions: 5% Pd(OAg) 25% PPB, 1.5 equiv of aryl siloxane, 1.5
equiv of TBAF, THF.? Isolated yield of purified product.

reaction could be used to synthesize a variety efCAring
modified allocolchicinoid precursors.

The first allocolchicinoid assembled was derived from
biaryl 16 (Table 1, entry 1) (Scheme 4). The biaryl was

Scheme 4. Synthesis of MOM-Protected Phenanthrol
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homologated by Wittig reaction, followed by oxidation, to
provide acid17 (Scheme 4). FriedelCrafts ring closure
generated air-sensitive phenanthrd8 which was im-
mediately protected to provide MOM eth&®.
Cyclopropanation of MOM ethet9 provided dichloro-
cyclopropyl adduc®0 (Scheme 5). Ring expansion, presum-

(8) (&) Negishi, E.-i.J. Organomet. Chenl999, 576, 179—194. (b)
Dyker, G.; Markwitz, H.; Henkel, GEur. J. Org. Chem2001, 2415—
2423. (c) Kozmin, S. A.; lwama, T.; Huang, Y.; Rawal, V. HAm. Chem.
Soc 2002 124, 4628-4641. (d) Scott, T. L.; Soderberg, B. C. G.
Tetrahedron Lett2002,43, 1621—-1624. (e) Scott, T. L.; Soderberg, B. C.
G. Tetrahedror2003,59, 6323—6332. (f) Ohshima, T.; Xu, Y.; Takita, R;
Shimizu, S.; Zhong, D.; Shibasaki, M. Am. Chem. So2002,124, 14546—
14547. (g) Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W®tg.
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D. J.; Bowen, J. PTetrahedron Lett1999,40, 459—462. (j) Felpin, F.-X.
J. Org. Chem2005,70, 8575—8578.
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Scheme 5. Phenanthrol Ring Expansion
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ably occurring via deprotected alcoh@ll, proceeded to
provide chloroenon@2. Hydrogenation of enon22 gave
saturated ketone23. Reductive amination followed by
acylation provided the knowtallocolchicinoid24.

Having successfully generated allocolchicindd, our
attention turned to the synthesis of NCMB) (Scheme 6).

Scheme 6. Synthesis of NCME Phenanthrol
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Biaryl 25 (Table 1, entry 2) was homologated to a&é.
Ring closure was effected in good yield by stirring in neat
methanesulfonic acid (MSA) for 2.5 h at room temperatfre.
Formation of the MOM ether proceeded smoothly to give
protected phenanthr@g*

Conversion of protected phenanthgdto ketone29 was
accomplished as described above (Scheme 7). Additionally,
it was found that only a single purification step was needed
to provide aryl ketone&9 in good yield for the three-step
procedure. Reductive amination of keto?2@ followed by
acylation provided the first fully synthetic NCME (2).

In summary, a short and versatile synthesis of the
allocolchicinoid carbon skeleton has been presented. It is

(10) Leon, A. A.; Daub, G.; Silverman, I. R. Org. Chem1984,49,
4544—4545,

(11) Attempts to close the ring using a Fried€@rafts approach (as for
18, Scheme 4) yielded complex mixtures, presumably due to the increased
reactivity of the activated C ring. Conversely, MSA proved ineffective for
the synthesis o138.
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Scheme 7. Final Stage of NCME Synthesis
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based upon a siloxane coupling reaction to form theCA
biaryl ring system and a phenanthrol ring expansion reaction
to provide the seven-membered B ring. In combination, these
protocols allow for the potential selective functionalization

disclosure of our results, as well as the synthesis of novel
allocolchicinoids, will be reported in due course.
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of every carbon present in the allocolchicine skeleton. Full 0L061413T
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